led散熱全攻略之如何快速解決led散熱問題
LED在工作時,會有80%左右的電能轉化成了熱能,20%的電能轉化為光能,因為LED芯片在工作時,他本身的環境溫度與出光率成反比關系的,溫度越高,出光率越低,當溫度達到LED芯片最高使用溫度時,LED會壞掉。這是因為LED的光衰或其壽命是直接和其結溫有關,散熱不好結溫就高,壽命就短,依照阿雷紐斯法則溫度每降低10℃壽命會延長2倍。從Cree公司發布的光衰和結溫的關系圖(圖1)中可以看出,結溫假如能夠控制在65°C,那么其光衰至70%的壽命可以高達10萬小時!這是人們夢寐以求的壽命,可是真的可以實現嗎?是的,只要能夠認真地處理它的散熱問題就有可能做到!遺憾的是,現在實際的LED燈的散熱和這個要求相去甚遠!以致LED燈具的壽命變成了一個影響其性能的主要問題,所以必須要認真對待!
圖1:光衰和結溫的關系
而且,結溫不但影響長時間壽命,也還直接影響短時間的發光效率,例如Cree公司的XLamp7090XR-E的發光量和結溫的關系如圖2所示。
圖2:結溫和發光量的關系
假如以結溫為25度時的發光為100%,那么結溫上升至60度時,其發光量就只有90%;結溫為100度時就下降到80%;140度就只有70%??梢姼纳粕幔刂平Y溫是十分重要的事。
除此以外LED的發熱還會使得其光譜移動;色溫升高;正向電流增大(恒壓供電時);反向電流也增大;熱應力增高;熒光粉環氧樹脂老化加速等等種種問題,所以說,LED的散熱是LED燈具的設計中最為重要的一個問題。
第一部分LED芯片的散熱
一.結溫是怎么產生的
LED發熱的原因是因為所加入的電能并沒有全部轉化為光能,而是一部分轉化成為熱能。LED的光效目前只有100lm/W,其電光轉換效率大約只有20~30%左右。也就是說大約70%的電能都變成了熱能。
具體來說,LED結溫的產生是由于兩個因素所引起的。
1.內部量子效率不高,也就是在電子和空穴復合時,并不能100%都產生光子,通常稱為由“電流泄漏”而使PN區載流子的復合率降低。泄漏電流乘以電壓就是這部分的功率,也就是轉化為熱能,但這部分不占主要成分,因為現在內部光子效率已經接近90%。
2.內部產生的光子無法全部射出到芯片外部而最后轉化為熱量,這部分是主要的,因為目前這種稱為外部量子效率只有30%左右,大部分都轉化為熱量了。
雖然白熾燈的光效很低,只有15lm/W左右,但是它幾乎將所有的電能都轉化為光能而輻射出去,因為大部分的輻射能是紅外線,所以光效很低,但是卻免除了散熱的問題。
二.LED芯片到底板的散熱
LED芯片的特點是在極小的體積內產生極高的熱量。而LED本身的熱容量很小,所以必須以最快的速度把這些熱量傳導出去,否則就會產生很高的結溫。為了盡可能地把熱量引出到芯片外面,人們在LED的芯片結構上進行了很多改進。
為了改善LED芯片本身的散熱,其最主要的改進就是采用導熱更好的襯底材料。早期的LED只是采用Si硅作為襯底。后來就改為藍寶石作為襯底。但是藍寶石襯底的導熱性能不是太好,(在100°C時約為25W/(m-K)),為了改善襯底的散熱,Cree公司采用碳化硅硅襯底,它的導熱性能(490W/(m-K))要比藍寶石高將近20倍。而且藍寶石要使用銀膠固晶,而銀膠的導熱也很差。而碳化硅的唯一缺點是成本比較貴。目前只有Cree公司生產以碳化硅為襯底的LED。
圖3:藍寶石和碳化硅襯底的LED結構圖
采用碳化硅作為基底以后,的確可以大為改善其散熱,但是其成本過高,而且有專利保護。最近國內的廠商開始采用硅材料作為基底。因為硅材料的基底不受專利的限制。而且性能還優于藍寶石。唯一的問題是GaN的膨脹系數和硅相差太大而容易發生龜裂,解決的方法是在中間加一層氮化鋁(AlN)作緩沖。
LED芯片封裝以后,從芯片到管腳的熱阻就是在應用時最重要的一個熱阻,一般來說,芯片的接面面積的大小是散熱的關鍵,對于不同的額定功率,要求有相應大小的接面面積。也就表現為不同的熱阻。幾種類型的LED的熱阻如下所示:
早期的LED芯片主要靠兩根金屬電極而引出到芯片外部,最典型的就是稱為ф5或F5的草帽管,它的散熱完全靠兩根細細的金屬導線引出去,所以散熱效果很差,熱阻很大,這也就是為什么這種草帽管的光衰很嚴重的原因。此外,封裝時采用的材料也是一個很重要的問題。小功率LED通常采用環氧樹脂作為封裝材料,但是環氧樹脂對400-459nm的光線吸收率高達45%,很容易由于長期吸收這種短波長光線以后產生的老化而使光衰嚴重,50%光衰的壽命不到1萬小時。因而在大功率LED中必須采用硅膠作為封裝材料。硅膠對同樣波長光線的吸收率不到1%。從而可以把同樣光衰的壽命延長到4萬小時。
下面列出各家LED芯片公司所生產的各種型號LED的熱阻
是不是碳化硅就是LED襯底的最佳選擇呢,不是這樣,任何事物都會有創新和發展的,最近臺灣的鉆石科技開發出了鉆石島外延片(DiamondIslandsWafer,DIW)做為生產超級LED的基材。這種LED的熱阻可以低至<5°C/W。用它制成的超級LED可發出極強的紫外光,其強度不因高溫而降低,反而會更亮。其結構圖如圖4所示。
圖4:采用類鉆碳(DiamondLikeCarbon,DLC)的鍍膜可以大大改善LED的散熱
而且采用紫外線來激發各種熒光粉也可以得到所需要的各種顏色的LED。而且熒光粉不是采用和環氧樹脂或硅膠混合的方法而是直接涂于芯片表面還可以避免由于環氧樹脂和硅膠的老化而產生的光衰。
這將會使整個LED產生*性變化。而且擺脫了日美等國的專利束縛。
三.集成LED的散熱
現在有不少廠商把很多LED晶粒集成在一起以得到大功率的LED。這種LED的功率可以達到5W以上,大多以10W,25W,和50W的功率等級出現。為了把多個LED晶粒(以共晶(Eutectic)或覆晶(Flip-Chip)封裝)連接在一起,因為這些晶粒極為精細,所以需要采用精確的印制電路進行連接。為了得到更好的散熱特性,通常采用陶瓷基板。這種陶瓷基板是由氧化鋁和氮化鋁構成。各種材料的導熱系數如下表所示。
圖6:薄膜電路的制備過程
采用氮化鋁的制作方法相同。
第二部分LED燈具的散熱
前面講的是LED芯片的散熱,然而任何LED都會制成燈具,所以LED芯片所產生的熱量最后總是通過燈具的外殼散到空氣中去。如果散熱不好,因為LED芯片的熱容量很小,一點點熱量的積累就會使得芯片的結溫迅速提高,如果長時期工作在高結溫的狀態,它的壽命就會很快縮短。然而這些熱量要能夠真正引導出芯片到達外部空氣,要經過很多途徑。具體來說,LED芯片所產生的熱,從它的金屬散熱塊出來,先經過焊料到鋁基板的PCB,再通過導熱膠才到鋁散熱器。所以LED燈具的散熱實際上包括導熱和散熱兩個部分?,F在先來看一下每一個環節的導熱性能。
四.各種電路基板的導熱
在把LED連接到散熱器之前,首先要把它們焊接到電路中去,因為首先要把這些LED連接成幾串幾并,同時還要把他們和恒流源在電路上連接起來。最簡單的辦法是把它們直接焊接到普通印制板上去。對于一些很小功率的LED,例如LED指示燈的確是可以這樣做的。但是對于大多數高亮度和高功率LED來說,普通玻璃纖維印制板的導熱性能就顯得太差了,而必須改成用銅基板或鋁基板甚至陶瓷覆銅板。各種基板的性能如下:
4.1鋁基板
目前幾乎絕大多數的LED燈具中都采用了鋁基板。鋁基板上電路的銅箔為了要導電和導熱要有足夠的厚度和寬度,其厚度在35?m-280?m之間。其寬度最好盡可能布滿整個基板,以便把熱傳下去。而下面一層絕緣體則要求其絕緣性能很好,而且還要導熱性能很好。然而這兩個性能是矛盾的,通常都是導體的導熱性能好,而絕緣體的導熱性能差。又要導熱好又要絕緣好是很難做到的。也是一種科研的課題。目前采用的是一種摻有陶瓷填充物的改性環氧樹脂或環氧玻璃布粘結片。通過熱壓把銅箔絕緣體和鋁板粘結起來。有一些LED燈具,雖然散熱器是經過精心設計,但是很快就壞,問題就是出在采用了熱阻很大的鋁基板或是剝離強度很差的鋁基板。用一段時間,電路薄膜就翹了起來,也就完全無法導熱,很快就燒壞LED。
對于優質鋁基板通常要求其熱阻小于1°C/W。下表是某種鋁基板的規格:
一種性能更好的鋁基板是采用直接在鋁板上生成陶瓷印制電路。先在鋁的表面用微弧氧化生長一層100μm厚的氧化鋁薄膜,再用濺射或絲網印刷制作電路層。采用這種方法的最大優點是結合力強,而且導熱系數高達2.1W/m.K,而且氧化層的熱膨脹系數和鋁差不多,所以它的剝離強度高達5N/mm以上。只是因為這種陶瓷鋁基板的加工制造過程復雜,成本高,所以還很少采用。
雖然鋁基板只是一種特殊的印制板,但是它卻承擔著很重的散熱任務,不僅絕緣層的導熱要好,粘結要牢,而且它的外形還必須和散熱器的外形配合,例如,在路燈里,通常是長方形的外形,在射燈中,通常是圓形的,而在日光燈中,通常是長條形的。為了得到更好的導熱性,也有時采用導熱更好的銅基板,只是其價錢要更貴。而且最后還是要連接到鋁制散熱器上去。有可能會產生熱膨脹系數不同而裂開的問題。
4.2導熱硅膠片、導熱雙面膠帶和導熱硅脂
鋁基板雖然已經解決了從LED連接到以鋁板為基板的電路上,可以把熱傳遞到鋁板上,但是遺憾的是,這個鋁板往往還不是最終的散熱器,通常還要把這個鋁板連接到真正的散熱器上去。最簡單的方法就是用鉚釘或螺釘的方法連接到散熱器。但是這種方法往往會形成空氣間隙,而很小的空氣隙產生的熱阻會比其他熱阻大幾十倍。因為空氣的導熱系數為0.023W/m?k。所以必須用壓縮性好的軟性導熱硅膠片來填充間隙,增加有效接觸面積,減小熱阻來傳導熱量,選擇導熱硅膠片時一定要正確選擇厚度合適的導熱硅膠片,因為壓縮性的問題,在選材時,導熱硅膠片的厚度一定要比LED鋁基板和散熱器之間的間隙大出20%-30%,這樣導熱硅膠片使用時才能充分接觸,更有效的填充間隙。GLPOLY導熱硅膠片導熱系數1.0-7.9,厚度0.3-5.0,耐電壓高達15KV,有普通導熱硅膠片和非硅導熱硅膠片二種類型,多種型號規格可選,可橫切成任意形狀,使用方便,重工性強。
其次,就是涂上導熱硅脂來填充空隙達到散熱效果。一般用于LED上的導熱硅脂的導熱系數大約在1-2W/mk。導熱硅脂必須要流動性好,不然的話由于涂抹不均勻仍然會產生氣隙,可能比不用還壞。導熱硅脂的另一個缺點是含有低分子矽氧烷,會造成LED光源霧化,出現光衰現象。GLPOLY非硅型導熱硅脂,不含低分子矽氧烷,無污染,無揮發,不會造成LED光源霧化,是出口歐美國家LDE燈散熱的理想導熱材料。
另一種方法是采用有很強黏結性而又導熱效果的導熱雙面膠帶。這種導熱雙面膠帶是使用丙烯系列材料制造出來帶有粘性的熱傳導膠帶,它是屬于有粘性和低熱抵抗的散熱材料。而且具備熱傳導性和柔軟性,可以緊貼零件上的凹凸部位,從而防止了氣隙的存在。導熱雙面膠帶的導熱系數通常在0.6-1.2W/m?k之間。它的抗拉強度可達8kg/cm2,耐壓可達4KV/mm。GLPOLY非硅強粘性導熱雙面膠帶,不含低分子矽氧烷成分,超強粘性足以黏接鋁基板和散熱器,而無需再使用螺絲固定,操作方便,簡化生產流程,節約成本。
4.3柔性印制板
從鋁基板的構造人們一定會產生這樣的疑問,為什么印制電路要先粘到一個薄鋁板上而不是直接粘到散熱器上?這樣還可以省去鉆孔、涂導熱膠、擰螺釘等工序,而且還可以省掉導熱膠的熱阻。主要原因是散熱器的形狀一般不是簡單的平面,要熱壓黏結比較困難,而且散熱器是由燈具廠設計制造的,而鋁基板則是由印制板廠制造的。解決這個問題的方法是采用柔性印制板再貼到鋁散熱器上去。
4.4LED直接焊到鋁散熱器上去
這是一種更為*的徹底解決方法。對于1W以上的大功率LED,通常它的散熱銅底板是和兩個電極是絕緣的。為了使它能夠更直接散熱,最好把它的散熱底板直接和散熱器焊接在一起。可是一般的散熱器都是鋁合金制成的,是無法焊接的。如果采用銅散熱器當然可以解決這個問題,但是無論是價錢和重量都是無法接受的。一個簡單的解決方法是在鋁散熱器上噴鍍銅。然后再在柔性印制板上打洞,使得LED的銅底板直接暴露在散熱器面上,然后采用低溫焊錫進行焊接。這種方法可以免除掉鋁基板的熱阻和導熱硅膠或硅片的熱阻。從而大大提高了散熱效率??傊?,LED到散熱器之間的界面越少越好。
五.熱管導熱
在很多場合需要把LED所產生的熱量以最快的速度傳送到散熱器,這在采用集成式的單片大功率LED中尤其重要,因為它的熱量很大(功率可達50W-100W)又很集中(有時只有30mm),這時候就必須采用熱管散熱。
熱管也稱為相變導熱器,因為在其中的液體從液相變為氣相而導熱。它的熱阻非常小,大約只有0.065°C/W。
其內壁采用銅粉燒結,以利于變回液相的載熱體吸附其上而回流。然而,熱管只能把熱傳送到遠端,而并沒有把熱量散發到空氣中去。所以即使采用熱管,還是需要有普通的鋁散熱器把熱量散發出去。再次要提醒注意的是,采用銅熱管以后,要特別注意它和前端的鋁基板以及后端的鋁散熱器的結合部一定要互相緊密地接觸并防止由于熱膨脹系數的不同而脫開。在其結合部要采用高質量的導熱硅膠涂敷。
導熱效果更好的是回路熱管
圖8:回路熱管
六.系統的熱阻
各部分的導熱能力也可以用系統的熱阻來說明,一個LED燈具的結構圖見圖9。
從圖中可以看出,LED芯片所產生的熱,從它的金屬散熱塊出來,先經過焊料到鋁基板的PCB,再通過導熱膠才到鋁散熱器。而要定量地了解LED芯片的散熱過程,最好利用熱阻的概念。熱量就好像電荷,熱量流動起來就好像電流,流動的過程中會遇到阻力,就好像電阻,在這里我們稱之為熱阻。熱阻的單位為每瓦多少度(°C/W),也就是每流過1瓦的功率會上升多少度。如果知道所需耗散的功率,又知道其熱阻,就可以知道它的溫升是多少。熱阻越大,熱量越流不動,溫升就越高,熱阻越小,熱量流動越快,溫升就越小。圖中表明熱量從LED芯片流出到空氣需要經過很多不同的熱阻:
Rj1:從芯片到安裝底板的熱阻(也就是芯片的熱阻)
Rj2:焊料的熱阻
Rj3:鋁基板的熱阻
Rj4:導熱硅膠的熱阻
Rj5:從散熱器到空氣的熱阻
所以從芯片到空氣的總熱阻就應該是:
Rja=Rj1+Rj2+Rj3+Rj4+Rj5
只要知道從芯片到空氣的全部熱阻,就可以根據需要耗散的功率Pd,計算出結溫來,知道了結溫也就可以知道其壽命了。
假定環境溫度為Ta,那么結溫為:
Tj=Pd(Rj1+Rj2+Rj3+Rj4+Rj5)+Ta
然而實際的LED燈具,從LED芯片到空氣所經過的熱阻要遠比這個多很多,例如,通常薄膜印制板是安裝在鋁基板上,鋁基板再安裝到鋁散熱器上,其間還要涂上導熱膠,導熱膠的厚度很難估計,而且其中還有殘存的氣隙。對于采用熱管的燈具,則還要考慮熱管和散熱鰭片之間的空隙和導熱膠的熱阻等問題。
而且最難估算的是Rj5,也就是散熱器到空氣的熱阻。這牽涉到很多有關對流和輻射的散熱機制問題。
需要注意的是在計算LED的散熱時,經常犯的一個錯誤是把LED的全部功率當成是其耗散功率Pd。例如,一個1W的LED,其正向電壓是3.3V,正向電流是350mA。于是就把這二者的乘積1.155瓦作為其耗散功率。這是錯誤的。因為這只是其輸入功率,而不是其耗散功率。有一部分輸入功率變成了有用的光發射出去了。需要作為熱來耗散的那部分,應當是輸入功率減去以有用光的形式發射出去的那部分,才是需要作為熱而耗散的那部分。不過這部分比較難計算。一般來說,因為LED的發光效率有所不同,而這個耗散功率也有所不同。一般來說,可以作如下的近似:發光效率為100lm/W,其耗散功率應為70%輸入功率,對于上面所說的1W的LED,也就是1.155x0.7=0.8W變成無用的熱需要散發出去。
那么是不是知道了所有各部分的熱阻,我們就可以知道這個LED燈具的總熱阻,也就可以知道LED芯片的結溫,也就可以知道這個燈具的壽命了呢?
情況遠遠不是那么簡單,雖然我們可以仔細分析每一部分的熱阻,甚至還可以得到比較精確的數字,但是還是有很多重要的因素被我們忽略掉了。因為上面的這個模型只不過是單個LED的燈具的模型,而實際的燈具要比這個模型復雜很多。
1.LED的分布。在很多情況下,LED燈具里是由很多顆LED所構成而不是只有一個LED。可能所有這些LED都焊在一塊鋁基板上。這時候如果只用標準的鋁基板的熱阻來計算整個燈具的熱阻就會有很大的出入。因為每個LED的散熱會受到周圍LED所發出的熱影響。換句話說,這時鋁基板的熱阻是很難計算的。
2.其他熱源的影響,例如LED的恒流電源就是重要的發熱源,假如這個發熱源靠近某些LED,那么就會明顯降低這些LED的散熱而縮短其壽命。也相當于改變了其熱阻。
3.熱阻實際上只考慮了熱傳導,而根本沒有考慮熱對流和熱輻射。熱量從LED芯片出發,經過了一系列不同材質傳導,最后到達鰭片散熱器。這些熱量最后都要散發到空氣中去。如果散發不到空氣中,那么這些熱量也會越積越多,導致結溫的升高。所以可以說,最后鰭片散熱器散到空氣中的這一環節,是最關鍵的一環,是最復雜的一環,也是最難計算的一環。或者說Rj5基本上是無法用簡單的計算就能算出來的。這就使得要通過所有部件的熱阻來計算出LED的結溫幾乎是不可能的事。
七.散熱器的設計
要談到散熱器,有一個概念先要搞清楚,就是導熱和散熱的區別。導熱就是要把熱量最快地從發熱源傳送到散熱器表面,而散熱則是要把熱量從散熱器表面散發到空氣中去。首先要把熱最快的導出來,然后要最有效地散到空氣里去。因為不管采用什么方法散熱,最后還是只能把熱量散發到空氣中。而熱量的散發只有兩種途徑:對流和輻射。
7.1對流散熱和輻射散熱
對于對流散熱來說,其基本公式如下:
Q=h?A?△T
其中Q為散去的熱量,h為熱對流系數,A為散熱器的散熱面積,△T為散熱器表面和附近空氣之間的溫度差。
更形象一點,可以用圖10來表示:
圖10:基于對流的散熱量的計算
熱輻射的散熱公式為“Q=E×S×F×Δ(Ta-Tb)”。公式中Q代表熱輻射所交換的能力,E是物體表面的熱輻射系數。在實際中,當物質為金屬且表面光潔的情況下,熱輻射系數比較小,而把金屬表面進行處理后(比如發黑)其表面熱輻射系數值就會提升。塑料或非金屬類的熱輻射系數值大部分都比較高。S是物體的表面積,F則是輻射熱交換的角度和表面的函數關系,但這里這個函數比較難以解釋。Δ(Ta-Tb)則是表面a的溫度同表面b之間的溫度差。因此熱輻射量和熱輻射系數、物體表面積的大小以及溫度差之間都存在正比關系。絕對黑體的輻射系數為1。熱輻射散熱也可以用另一個公式來表示:
由表中可見,氧化處理是改進材料的輻射散熱的重要途徑。采用鑄鐵的暖氣片有相當一部分的散熱靠的是輻射散熱。而且塑料的熱輻射性能和氧化后的金屬差不多。
為了改進輻射散熱,鋁合金鰭片散熱器要進行發黑處理,但是有人是采用噴黑色塑膠漆的方法,這種方法雖然也使其表面變黑,但是實際上又加上了一層絕緣層,妨礙了它的散熱。最好的方法是采用陽極氧化發黑處理,這個氧化層可以做得很薄,不至于影響其散熱,但對輻射散熱有很大的改進。
總之,不管是對流還是輻射都是和散熱器的散熱面積成正比,所以要改善散熱一定要加大散熱器的面積。
八.鰭片散熱器
散熱器采用鰭片的形狀是為了加大散熱面積。以利于輻射散熱和對流散熱。散熱器的最重要指標就是它的散熱面積A,但是散熱器的不同部位的散熱效果是不同的。在根部的散熱效果就差,而在頂部的散熱效果就好。所以散熱器有一個有效散熱面積。它通常是實際面積的70%左右。從經驗得出,一般要散1W功率的熱量大約需要50-60平方厘米的有效散熱器面積。
而散熱器的材料通常是用鋁合金,和銅相比,雖然其熱傳導只有銅的一半,但是它重量輕、易加工、價格便宜,所以還是廣泛地應用于散熱器之中。
為了加大散熱面積,通常會采用增加高度的方法。但是,高度增加到一定程度以后其作用會越來越小。
圖12:LED結溫隨散熱器的高度增加而降低
由圖中可以看出,高度增加到40mm以后,結溫的降低就很慢了。
加大長度也是加大面積的一個方法。但是并不是長度越長越好。
由圖中可知,長度增加到一定程度以后,結溫不但不再降低,反而會升高。這是因為空氣在沿長度方向的流動受到阻礙所致(主要對于垂直放置的鰭片為如此)。
所以對于散熱器來說,除了加大面積以外,如何加速空氣的對流是很重要的事,尤其是像LED路燈這類安裝在室外的路燈更為重要。由于室外的風向是不定的,為了在各種風向情況下都能有很好的對流,最好采用針狀鰭片散熱器。但這也減小了其等效散熱面積很大的百分比。
珠海南科首次把針狀散熱器應用至LED路燈中,據說這可以使LED的結溫降低15度以上,提高了LED的壽命。
路燈散熱器往往由于灰塵和鳥糞的積累而使其散熱效果大為降低,所以通常采用朝下安裝的方法來避免,但是這樣做又會使空氣對流的效果降低,因為熱空氣是向上流動的。通常要在安裝時有一個傾斜角來改善。
九.采用強制風冷散熱
目前幾乎絕大多數的LED燈具都是采用自然空氣對流來散熱的。然而,對流的散熱效果是和空氣的流速是有密切關系的。在一個15W的LED燈具中,如果采用強制風冷可以得到其LED的結溫和風速的關系。
在電腦的CPU中,從來都是采用小風扇的強制風冷系統來散熱的。那么在LED中能不能也采用風扇來散熱呢!
目前最大功率的LED燈具要算是LED路燈了。LED路燈和電腦最大的差別就是它是安裝在室外的十分惡劣的環境條件下的。如果采用風扇,那么這種風扇也必須能夠承受十分惡劣的環境條件。例如必須能夠防水、防潮、防塵,能夠承受高低溫的考驗,等等…。而且它本身不能消耗很大的功率。
最近臺灣Sunon公司推出全球最小、最薄、耗電量最低的“毫米科技風扇與鼓風扇MightyMiniFan&Blower。并用于各種功率的LED燈具。例如,應用于LED球泡燈,就可以突破9W的瓶頸限制而達到15W的水平。同時展示全新“One-module”概念所設計的LED散熱模塊,將LED燈具散熱模塊化,一款散熱模塊可應用于多款LED燈具,簡化客戶端的設計流程,預計推出可散熱7-15W、10-25W、25-40W幾種功率水平??蓱糜贚ED球燈、筒燈、MR16投射燈、LED軌道燈等各式LED應用產品的散熱。
十.結束語
目前LED的發光效率還是比較低,從而引起結溫升高,壽命降低。為了降低結溫以提高壽命就必須十分重視散熱的問題。LED的散熱設計必須從芯片開始一直到整個散熱器,每一個環節都要給于充分的注意。任何一個環節設計不當都會引起嚴重的散熱問題。過去的LED路燈在長期工作中的大量失效,一半以上是散熱設計欠缺所引起,另一半是電源失效所引起。所以對散熱的設計必須給以充分的重視。
GLPOLY專注LED導熱硅膠片、LED導熱硅脂、LED導熱雙面膠帶等LED導熱散熱材料的研發生產,提供LED一站式散熱解決方案,是歐司朗和飛利浦的長期供貨商。庫存充足,多種規格型號可選,總有一款適合您,咨詢熱線0755-27579310。